

PARTNERS:

FPGA based digital control

Zoltan Kincses

2014.01.10.

Overview

1. The FPGA architecture in general

2. The Xilinx FPGA family

3. The Digilent Atlys prototyping board

4. The Xilinx Design Flow

5. System Generator for DSP

6. Implementing LMS adaptive filter using System
Generator

1. The FPGA architecture in
general

The FPGA architecture

PI – Programable Interconnect

IOB

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

IOBIOBIOBIOBIOBIOB IOB

IOB IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB IOB IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM DCM

DCMDCM

• LB: The Logic Block contains LUTs (Look-Up-
Table) which can be used to realize for
example arbitrary multiple-input (4 or 6)
single-output logic functions. The output of
the LUTs can be connected to D-type flip-flops.
The Logic Block can contains multiplexers,
simple logic gates and interconnects

• IOB: The Input/Output Block is the interface
between the inner programmable logic and
the output world. The Input/Output Block
supports approximately 30 industrial
standards (e.g. LVDS, LVCMOS, LVTTL, SSTL …).

• PI: The inner components of the FPGA are
connected to each other using the
Programmable Interconnect

• DCM/CMT: The Digital Clock Manager circuit is
capable to modify the frequency and the
phase of the input clock

Logic Block

Carry

logic

Flip-

Flop

Carry out

Carry in Clock

Memory

cell

OutputInput
Programmable

logic network

Programmable logic
network

8-1

Multiplexer

0

1

2

3

4

5

6

7

S2

S1

S0

Output

1

0

0

0

0

0

0

0

A B C

M
e

m
o

ry
 c

e
ll
s

Logic cluster

Carry

logic

Flip-

Flop

Carry out

Clock

Memory

cell

Carry

logic

Flip-

Flop

Carry in Clock

Memóry

cell

M
u

lt
ip

le
x

e
r

tr
e

e

Cluster

input

Cluster

output

Programmable

logic network

Programmable

logic network

Programmable
Interconnect
• Types of interconnects

– Local interconnect for the connection of the elements of
the cluster

– Global interconnect for the connection of the clusters
• Island (Xilinx)
• Cellular
• Long-line (Altera, Actel)
• Row (Actel antifuse)

• Programable interconnect implementation methods
– SRAM (Xilinx, Altera)
– EEPROM/Flash
– Antifuse (Actel)

2. The Xilinx FPGA family

Xilinx FPGA family
 High performance

 Virtex (1998)
 50K-1M gate, 0.22µm

 Virtex-E/EM (1999)
 50K-4M gate, 0.18µm

 Virtex-II (1999)
 40K-8M gate, 0.15µm

 Virtex-II Pro/X (2002)
 50K-10M gate, 0.13µm

 Virtex-4 (2004) [LX, FX, SX]
 50K-10M gate, 90nm

 Virtex-5 (2006) [LX, LXT, SXT]
 65nm

 Virtex-5 FXT, TXT (2008)
 65nm

 Virtex-6 LXT, SXT (2009)
 40nm

 Virtex-7 (2011)
 28nm

 Low cost

 Spartan-II (2000)
 15K-200K gate, 0.22µm

 Spartan-IIE (2001)
 50K-600K gate, 0.18µm

 Spartan-3 (2003)
 50K-5M gate, 90nm

 Spartan-3E (2005)
 100K-1.6M gate, 90nm

 Spartan-3AN (2006)
 50K-1.4M gate, 90nm

 Spartan-3A - DSP (2006)
 1.8M-3.4M gate, 90nm

 Spartan-6 LX, LXT (2009)
 45nm

…

 Artix-7 (2011)
 28nm Kintex-7 (2011)

28nm

High-performance Xilinx Virtex
FPGA family resources (1998-2012)

Virtex; (128K)

Virtex-E/EM; (1120K)

Virtex-II; (3024K)
 Virtex-II Pro; (7992K)

Virtex-4; (9936K)
 Virtex-5; (18567K)

Virtex-7
(67680K)

Virtex; (27 648)

Virtex-E/EM; (73 008)

Virtex-II; (46 592)

Virtex-II Pro; (99 216)

Virtex-4; (200 448)

Virtex-5; (331 776)
Virtex-6;

(758 784)

Virtex-7,
(1,954,560)

 Virtex-II; (168)
 Virtex-II Pro;

(444)

 Virtex-4; (512)

 Virtex-6;
(2 016)

Virtex-7
(3 360)

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

R
e
a
c
h

a
b

le
 r

e
s
o

u
rc

e
s

Year

BRAM memory (Kb) Logic Cells Multiplier

Virtex-6;

(38304K)

Virtex-5;

(1 056)

Xilinx Spartan-6 LX FPGA

General structure

MicroBlaze

Soft-proc

Core(s)

CMT

Xilinx Spartan-6 LX FPGA
CLB
• CLB – Configurable Logic Block

– 2 Slice

Xilinx Spartan-6 LX Slice

• Three different types
– SLICEL, SLICEM, SLICEX

• SliceL (25%) = as logic: 6-
LUT, 8 D-FF, wide MUX,
Carry Logic

• SliceM (25%) = as memory:
SliceL + SRL-32x1, RAM-
64x1 memory

• SliceX (50%) = as basic slice
(only logic): 6-LUT, 8 D-FF

Xilinx Spartan-6 LX BRAM

• Configurable BRAM
– Contains 2 independent

9Kbit BRAM
– Configurable as

• FIFO
• RAM
• ROM

– Configurable as
• Single port
• Dual port
• Quad port

Xilinx Spartan-6 DSP Slice
• DSP48A1 block (~250MHz)

– 18x18bit signed 2’s complement multiplier
– 18bit pre-adder
– 48-bit dedicated MUX
– 48-bit post-adder/subtractor

P = C ± (A × (D ± B) + CIN)

Xilinx Spartan-6 IOB
• Single-ended signals:

– 3.3V low-voltage TTL (LVTTL),
– Low-voltage CMOS (LVCMOS)

3.3V, 2.5V, 1.8V, 1.5V, 1.2V
– 3V PCI @ 33 MHz / 66 MHz
– HSTL I - III @ 1.8V (memory)
– SSTL I @ 1.8V, 2.5V (memory)

• Differential signals:
– LVDS
– Bus LVDS
– mini-LVDS
– Differential HSTL (1.8V, Types I

and III)
– Differential SSTL (2.5V, 1.8V,

Type I)
– DDR, DDR2, DDR3, LPDDR

support

Xilinx Spartan-6 CMT –
Clock Management Tile

DCM – Digital Clock management

 1 CMT = 2 DCM + 1 PLL
Number of CMTs : 4 – LX45
DLL: Delayed Locked Loop
• Phase shift: 0º, 90º, 180º,

270º
• Clock multiplication (M)/

division (D) 1.5, 2, 2.5, 3, 4, 5,
… 16

• 5 MHz – x100 MHz
DFS: Digital Frequency Synthesis
• Clock signal duplexing /

halving
• Input/Output clock signal

buffering

Embedded processors on
Xilinx FPGAs

• „Embedded” soft-processor cores:

– Xilinx PicoBlaze: 8-bit (VHDL, Verilog HDL sourde)

– Xilinx MicroBlaze: 32-bit (EDK support)

– 3rd Party processor cores (HDL forrás)

• „Embedded” hard-processor cores:

– IBM PowerPC 405/450 processor (dedicated): 32-bit
– Only Virtex II Pro, Virtex-4 FX, Virtex-5/6 FXT FPGAs

3. The Digilent Atlys prototyping
board

Atlys™ Spartan-6 FPGA
prototyping board

• Xilinx Spartan-6 LX45 FPGA

• 128Mbyte DDR2 16-bit

• 10/100/1000 Ethernet PHY

• USB2 port (programing and data transfer)

• USB-UART and USB-HID port
(mouse/keyboard)

• 2 HDMI video input and 2 HDMI output

• AC-97 Audio Codec

• Real-time power monitor

• 16MByte x4 SPI Flash (configuration and
data storage)

• 100MHz CMOS oscillator

• 48 I/O (external connection)

• GPIO: 8 LED, 6 pushbutton, 8 switch

• 1 PMOD, 1 VMOD connector

PMOD – Peripheral
modules
• PMOD connector (12 pin): 2 VCC + 2 GND + 8

data

PMOD modules

• PMODs for expansion
– Character LCD, OLED, 7segLED

– GPS transceiver, WiFi, Bluetooth,

– Ethernet IF, USB-UART, RS232

– Joystick, Rotary Enc., Switches,

– SD Card, Serial Flash,

– A/D, D/A converters, H-bridge

– Accelerometer, Gyroscope,

– Thermometer,

– ...

3. The Xilinx Design Flow (XDF)

„FPGAs programing
language”:
• I.) Traditional HDL languages:

– a.) VHDL,
– b.) Verilog

• II.) C-based languages (C → FPGA synthesis):
– a.) Impulse-C,
– b.) Catapult-C,
– c.) Handel-C,
– System-C, Mitrion-C, … (and ~10 other)

• III) Modell based languages:
– a.) Matlab Simulink based System Generator,
– b.) NI LabView (FPGA Module)

Synthesis

Constraints (.ucf)

Design entry:

- HDL (.vhd)

- Schrmntic (.sch)

- State diagramm

Testbench

RTL simulation

Functional simulation

Timing simulation

Implementation

Translate

Map

Place & Route

Bitstream generation Static Timing Analysis

FPGA

FPGA

.ngc / .edf

pcf

.ncd

.bit

Main steps of the XDF (I.)

• 1.) Modular or component based system
design

– Design the HDL description, schematic, or state-
diagram = design entry

– Defining user-design constraints

• 2.) Simulation:

– every level of the system desing

– HDL testbench

• 3.) Synthesis and implementation:
– Synthesis: The HDL description transformed general gate—

level components during the „logic synthesis” (e.g. logic
gates, FFs)

– Implementation: 3 main steps:
• TRANSLATE: Merging more design files (maybe in different HDL

language) into one netlist (EDF) file. The netlist contains the
standard textual description of the components and their
connections.

• MAP: Technology mapping of the created „logic” design using the
EDIF file created in the previous step. This process transforms the
„logic” design into CLBs and IOBs.

• Placer & Route (PAR): The previously created CLB and IOB design
placed into real FPGA cells, and the connections between these
cells are also created. The output of these process is an .NGC file.

Main steps of the XDF (II.)

• 4.) Static timing analisys: Determining the
timing parameters (max. clock frequency, gate
delay time, signal propagation delay…)

• 5.) Bit-stream: Generate FPGA configuration
file (.BIT) an download it to the FPGA (the set
up of the CLBs, and programmable
interconnects is required in every startup,
thanks to the SRAM technology used in the
Xilinx FPGAs).

Main steps of the XDF (III.)

4. System Generator for DSP

Overview of System
Generator for DSP
• The industry’s system-level design environment (IDE) for FPGA

– Integrated design flow from the Simulink software to the BIT file

– Leverages existing technologies

– MATLAB , Simulink

– HDL synthesis

– IP Core libraries

– FPGA implementation tools

• Simulink library of arithmetic, logic operators, and DSP functions

– BIT and cycle-true to FPGA implementation

• Arithmetic abstraction

– Arbitrary precision fixed-point, including quantization and overflow

– Simulation of double precision as well as fixed point

Overview of System
Generator for DSP
• VHDL and Verilog code generation for many Xilinx FPGA devices

– Hardware expansion and mapping

– Synthesizable VHDL and Verilog with model hierarchy preservation

– Mixed-language support for VHDL/Verilog

– Automatic invocation of the CORE Generator software to utilize IP cores

– ISE project generation to simplify the design flow

– HDL testbench and test vector generation

– Constraint file (XCF), simulation DO file generation

– HDL co-simulation via HDL C-simulation

• Verification acceleration by using hardware-in-the-loop through
Parallel Cable IV,

• Platform Cable USB, and Network-based as well as Point-to-Point
Ethernet connections

Model Based Design using
System Generator

• Develop an executable spec
using Simulink

• Refine the hardware
algorithm using System
generator

– Verify hardware against
executable spec

System Generator for DSP
platform designs

• Simulink softwer verification
• HDL co-simulation verification
• Hardware Co-Simulation verification

System Generator based
desing flow
• Simulink software verification

System Generator design-
flow
• HDL Co-simulation verification

System Generator design-
flow
• Hardware Co-simulation verification

Interfacing with SysGen
Design
• The Simulink environment uses a 64-bit 2’s complement

“double” to represent numbers in a simulation.
– Max/min: +/- 9.223 x 1018

– Resolution: 1.08 x 10-19
– Wide desirable range, but not efficient or realistic for FPGAs

• The Xilinx blockset uses n-bit fixed point numbers (2’s
complement is optional)

• Thus, a conversion is required when Xilinx blocks
communicate with Simulink blocks

Gateway In

• The Gateway In block support parameters to control the
conversion from double precision to n-bit Boolean, signed
(2’s complement), or unsigned fixed-point precision

• During conversion the block provides options to handle
extra bits

• Defines top-level input ports in the HDL design generated
by System Generator

• Defines testbench stimuli when the Create Testbench box is
checked in the System Generator block

• Names the corresponding port in the top level HDL entity

Gateway Out

• The Gateway Out block converts data from
System Generator fixed point type to Simulink
double

• Defines I/O ports for the top level of the HDL
design generated by System Generator

• Names the corresponding output port on the top
level HDL entity provided the option is selected

Data types

• FIX data type produces a signed
2’s complement number

• UFIX data type produces unsigned
number

• When the output of a block is user
defined, the number is further
conditioned according to the
selected Quantization and
Overflow options

Boolean types

• The Xilinx blockset also uses the type Boolean for control
ports, such as CE and RESET

• The Boolean type is a variant of the one-bit unsigned
number in that it will always be defined (High or low)
– A one-bit unsigned number can become invalid; a Boolean

type cannot

Floating-Point types

• Floating-point Precision
– Single: Specifies single

precision (32 bits)
– Double: Specifies double

precision (64 bits)
– Custom: Activates the field

below so you can specify
the Exponent width and the
Fraction width.

• Exponent width: Specify the
exponent width

• Fraction width: Specify the
fraction width

Creating a System
Generator desing

Start Simulink

Create modell and add new element

The System Generator
modell in Simulink

Creating a System
Generator desing

• Build the design by dragging and dropping blocks
from the Xilinx blockset onto your new sheet

Connect the blocks by
pulling the arrows at the
sides of each block

Finding blocks
• The Xilinx blockset has eleven

major sections
– AXI4: FFT, VDMA
– Basic elements: counters, delays
– Communication: error correction

blocks
– Control Logic: MCode, black box
– DSP: FDATool, FFT, FIR
– Data Types: convert, slice
– Index: all Xilinx blocks (a quick

way to view all blocks)
– Math: multiply, accumulate,

inverter
– Memory: dual port RAM, single

port RAM
– Shared memory: FIFO
– Tools: ModelSim, resource

estimator

Configuring your blocks
• Double-click or go to Block

Parameters to view and change
the configurable parameters of a
block using multi-tabbed GUI

• Number of tabs and type of
configurable parameters under
each tab is block dependent

• Some common parameters are:
– Precision: User defined or full

precision
– Arithmetic Type: Unsigned or

twos complement
– Number of Bits: total and fraction
– Overflow and quantization:

Saturate or wrap overflow,
truncate or round quantization

– Latency: Specify the delay
through the block

Creating a System
Generator desing

System Generator desing

Sampling period
• Every System Generator signal must be “sampled”;

transitions occur at equidistant discrete points in time,
called sample times

• Each block in a Simulink design has a “sample period,”
and it corresponds to how often the function of that
block is calculated and the results outputted

• The sample period of a block directly relates to how
that block will be clocked in the actual hardware

• This sample period must be set explicitly for:
– Gateway In
– Blocks without inputs

• The sample period can be “derived” from the input
sample times for other blocks

System Generator Token
Setting the global sampling
time

Sampling period = 1

System Generator token
Selecting complation target

• Speed up simulation
– Various varieties of

hardware co-
simulation

• Generate Hardware
– HDL Netlist, NGC

Netlist, Bitstream

• Analyze Performance
– Timing and Power

Analysis

System Generator token
Generating HDL code

• Specify the implementation Parameters
• – HDL Netlist as the compilation mode
• – Select the target part
• – Set HDL language
• – Set the FPGA Clock Period (in Clocking tab)
• – Check Create Testbench
• Generate the HDL

Once complete double-click
the system generator token

Hardware Co-simulation
Choosing compilation target

• Select the Co-
simulation target
hardware

Hardware Co-simulation
Design compliation

Press the
generate button

Design
automatically
complied to
produce bitstream

Hardware Co-simulation
Run time co-simulation
blocks

6. Implementing LMS adaptive
filter using System Generator

LMS adaptive filters using
System Generator
• Examples

– How to implement LMS adaptive filter using
System Generator

– Determining the correct number of weights

– Determining the correct step size

– Dynamic channel characteristic

– ECG adaptive filtering

• We woluld also like to thank for the Xilinx
University Program

