8. SOME RECENT RESULTS AND PROBLEMS IN
NOISE RESEARCH

8.1. New models and properties of 1/f noise
8.1.1. Scaling Brownian motion

1/f noise:

no general model

not completely understood

very wide range occurance in nature

=> New models required
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Possibilities:

- searching for systems having 1/f noise
iInherently

- searching for a simple method for
generating 1/f noise

- deriving 1/f noise from other well known
noises (white, Lorentzian, H)f

Generating 1/f noise is easy:
- Integrating or differentiating white noise
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Other noises (e.g. Tjf

- weighted sum of Lorentzians

1/f

log S (£)

log £

- non-linear transforms
- special algorithms
- solution of a differential equation
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Generating 1/f noise:

try a simple recursive algorithm:

x(t+t)=r(x(t))

Xi=E(X;)

e.g. random walk:

X =X W

However, 1/f is not Markovian, it does not
work.

Proof:

- measure p(xx,,) for 1/f noise

- generate random variable with this

distribution
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which results Lorentzian noise

Another possibility: scaling

y(t)=r(x(t))

where x(t) is a noise, e.g. 1/f
For 1/f: symmetrized power function

-

x® 1f x>0
f(x)=40 1 x=0

| [x|* 1f x<0
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Examples:

Amplitude

time

]

1/f

1/f£




8.1.2. Amplitude saturation of 1/f noise
1/f¢ noise

- discovered a long time ago

- general occurance in nature

Several problems
- origin not completely understood

- properties not completely known

Further investigations, models required
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Non-linear transformations of 1/f¢ noises

- Amplitude distibution : wusually not a

problem.

- Power spectrum, autocorrelation ?

Amplitude truncation using two levels:
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log S (f)

1/f

Important observation

for

(simulation, measurement) :

1/f

noise

The power spectrum remains 1/f
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Preconditions?

True for any level, even for assymetric
cases.
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Other 1/f¢ noises?

1/f : 1/f*°, only for ZCD! (theoretical)
corner point depending on the
truncation levels.

1/ 1/, -"-, no theory

1/f . 1/f - is it exactly true?

1/ 1/°°

white : white - not suprising
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Questions, problems:

spectrum is invariant against any truncation
-> only the zero crossing time instants
responsible for 1/f spectrum ?

theory ?

find the preconditions:

- only gaussian noises? - There are
exceptions.

- other transformnations? / f(x)3x.../

- how many possibilities to "make 1/f
from 1/f* ?

convergence : 17f-> 1/f*>-> ... ->1/f ?
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useful to understand the generality of 1/f

noise?

- find the systems, that can produce this
kind of transformation
- experiments, further Investigations

required

8-16



8.2. Stochastic resonance
Stochastic resonanc&R):

sin
 —
Nonlinearxr output signal
—
noise system
 —

- Input : periodic signal and noise
- SNR at the output (at the input frequency)
has a maximum vs. input RMS of noise
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Simple bistable system producing SR
Output signal = position of the particle.

U(X,t)=-ax+bx*+exsin(wt)

T1 T2
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Sample output waveform
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U(X,t)=-ax+bx*+exsin(wt)

Solution by analog computer:

<_
% () E Asin(wt)
kx (t
k > x(t) >
fdt fdt 4
x (t) x (t) x(t)

X=-kx+x-x +Asin (wt) +w (t)
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Analog simulations using a Schmitt-trigger:

SINE

GENERATOR
SIGNAL -
ANALYSER
(COMPUTER)

1/f-NOISE

GENERATOR SUMMING SCHMITT -

CIRCUIT TRIGGER
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Stochastic resonance occurs In;:

- Ice ages (fisrt system for introducing SR
Benzi, Nicolis, 1981),
- meteorological phenomena

- digitized data (dithering method)

- laser with saturable absorber

- ring laser (McNamara,Wiesenfeld,Roy
1988)

- chaotic systems

- detecting noisy magnetic fields, SQUID

- biological systems, neurons (firing)

- bi- and multistable systems
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Possible applications of SR

- detecting signals in noisy systems

- Information processing, transmitting

- understanding physical and biological
systems, proposing models

Analyzing SR theoretically and
experimentally
Quantities:

X(t) amplitude

S(f) power spectral density
pP(X) probability densisty

pP(T) residence time statistics
SNR signal-to-noise ratio
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Theories

- McNamara,Wiesenfeld adiabatic
approximation

- Hanggi-Jung theory

-  Dykman, LRT

Experimental analysis

- measurements in (S(f), P( stb.) systems
showing SR (laser, SQUID, neurons, etc.)

- analog simulations (diff.eq. solutions)

- numerical simulations
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New results

- SR with coloured noises (1/f, Lorentzian)
Hanggi, Moss, Kiss,Gingl, 1992

- Non-dynamical SR, Moss, Wiesenfeld,
Kiss,Gingl, 1993-1995

- Improving SNR ?, Kiss, 1995, Kiss,
Gingl, Lorincz (1996)
SNR Out > SNR In ?

Non-dynamical SR
(Gingl et. al. invited talk, Int.Conf. on

Fluctuations in Physics and Biology, Elba,
Italy, 1994)
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The simplest system showing SR, the level-
crossing detector (LCD) (Moss, 1993)

Gaussian noise+periodic signal > threshold
-> Impulse at the output

STN i
3 LCD |—

NOILSE
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Theory (Kiss, 1994)
- slow, weak modulation of frequency of
the pulses, Gaussian noise
U,,=VAT => U,,(t)=v(DAT
- theoretical result: S-N and SNR

2
_(Ut/D>

QN = const e

I)4

- second harmonic: two maximuma in SNR
(LOrincz)

-(U./D)°

2

22
(U.-D)e

S-N = const
D8
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Experimental study (Gingl, 1994)
- analog and numerical simulations

- verification of theory, extensions

NOISE D/A >— _—|_|_|_
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LCD SR system

Fundamental SR system:

- extension of SR (new system)

- simplest

- non-dynamical

- process independent of frequency

- theory:linear,adiabatic approximation

- level-crossing also in dynamical systems

- SR depends on the level-crossing

statistics of noiseeven in dynamical
systems
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8.3. Biased percolation model of device
degradation

Failure of electronic devices
(resistors,transistors,contacts,|Cs)
Problems :(critical apps.)

- Is the device reliable?

- how close the device to the failure?

- excitations to test state? (in use; affect
state)

- what we need to be measured?
/IR,0,T,0R,S(f),.../
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New percolation model(1995,
NODITO,Brno)

Percolation:
- randomly changing state of elements of a

structure

- successful applications in many systems
(spin, high Tc superconductors, phase
transitions, ...)
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Homogeneous thin film resistors

Simple model, network of uniform resistors
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Time evolution of state

position of elements : 1,

probability of failure of an element :; p of

R;;->Inf

- p;=const ->"free" percolation

- Pi=PeXP(-E/KT;;)-> "biased" percolation
T,=T,+B*I%*R;; Joule-heating
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Free percolation
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Biased percolation

10O 1
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Monte-Carlo simulations

Random decisions using;values in every

step, transform the lattice to the new state:

- we have a given state of the sample,
then

1. calculate all currents flowing in resistors

2. calculate all probabilities; p

3. change the state of all resistors randomly

using p;

How to calculate the currents?

8-41



8-42



2 (x x x x \ /I1\
Q| |x 0

Q] |X

Q] |X

e —

o

@ X

) X

) 9 X

\U'$ \ XX XX, \Ik/

Size of netwok : n x n
equations : k=fr1
resistors : 2n(n+1)
>0 coeffs.: < (2n+1)(Ar1l) vs. (If+1)
Operations: < (2n+Xn*+1)/2 vs. (rf+1)*/2
100x100 -> 20200 resistors, 10001 equations

8-43



Free percolation
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Biased percolation
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Time evolution of sample resistance and

noise
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Noise properties

Spatially equally distributed, independent
Lorentzian fluctuations with, different
correlation times:

Distribution oft Is g(t)=c/t -> 1/f noise.

1/f

log S (L£)

log £
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Results

- A new model for faulire of electronic

devices based on percolation

MC simulations for free and biased

percolation:

R(t)

Distribution of current density, Joule
power

Noise spectrum of the system

Further development

noise temperature
OR vs. R
how to predict failure of devices using

this model

other structures, e.g. disordered
3D modellings
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