
8. SOME RECENT RESULTS AND PROBLEMS IN

NOISE RESEARCH

8.1. New models and properties of 1/f noise

8.1.1. Scaling Brownian motion

1/f noise:

- no general model

- not completely understood

- very wide range occurance in nature

=> New models required
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Possibilities:

- searching for systems having 1/f noise

inherently

- searching for a simple method for

generating 1/f noise

- deriving 1/f noise from other well known

noises (white, Lorentzian, 1/f2)

Generating 1/f2n noise is easy:

- integrating or differentiating white noise
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Other noises (e.g. 1/fκ)

- weighted sum of Lorentzians

- non-linear transforms

- special algorithms

- solution of a differential equation
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Generating 1/f noise:

try a simple recursive algorithm:

e.g. random walk:

However, 1/f is not Markovian, it does not

work.

Proof:

- measure p(xi,xi+1) for 1/f noise

- generate random variable with this

distribution
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which results Lorentzian noise

Another possibility: scaling

where x(t) is a noise, e.g. 1/f2

For 1/fκ: symmetrized power function
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Examples:
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8.1.2. Amplitude saturation of 1/f noise

1/fk noise

- discovered a long time ago

- general occurance in nature

Several problems

- origin not completely understood

- properties not completely known

Further investigations, models required
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Non-linear transformations of 1/fk noises

- Amplitude distibution : usually not a

problem.

- Power spectrum, autocorrelation ?

Amplitude truncation using two levels:
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Important observation for 1/f noise

(simulation, measurement) :

The power spectrum remains 1/f
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Preconditions?

True for any level, even for assymetric

cases.
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Other 1/fk noises?

1/f2 : 1/f1.5 , only for ZCD! (theoretical)

corner point depending on the

truncation levels.

1/f1.5 : 1/f1.3, -"-, no theory

1/f : 1/f - is it exactly true?

1/f0.5 : 1/f0.5

white : white - not suprising
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Questions, problems:

- spectrum is invariant against any truncation

-> only the zero crossing time instants

responsible for 1/f spectrum ?

- theory ?

- find the preconditions:

- only gaussian noises? - There are

exceptions.

- other transformnations? / f(x)=x2, .../

- how many possibilities to "make 1/f

from 1/f" ?

- convergence : 1/f2 -> 1/f1.5-> ... ->1/f ?
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- useful to understand the generality of 1/f

noise?

- find the systems, that can produce this

kind of transformation

- experiments, further investigations

required
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8.2. Stochastic resonance

Stochastic resonance (SR):

- input : periodic signal and noise

- SNR at the output (at the input frequency)

has a maximum vs. input RMS of noise
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Simple bistable system producing SR

Output signal = position of the particle.

U(x,t)=-ax2+bx4+εxsin(ωt)
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Sample output waveform
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U(x,t)=-ax2+bx4+εxsin(ωt)

Solution by analog computer:
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Analog simulations using a Schmitt-trigger:
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Stochastic resonance occurs in:

- ice ages (fisrt system for introducing SR,

Benzi, Nicolis, 1981),

- meteorological phenomena

- digitized data (dithering method)

- laser with saturable absorber

- ring laser (McNamara,Wiesenfeld,Roy

1988)

- chaotic systems

- detecting noisy magnetic fields, SQUID

- biological systems, neurons (firing)

- bi- and multistable systems
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Possible applications of SR

- detecting signals in noisy systems

- information processing, transmitting

- understanding physical and biological

systems, proposing models

Analyzing SR theoret ical ly and

experimentally

Quantities:

x(t) amplitude

S(f) power spectral density

p(x) probability densisty

p(τ) residence time statistics

SNR signal-to-noise ratio
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Theories

- McNamara,Wiesenfeld adiabatic

approximation

- Hanggi-Jung theory

- Dykman, LRT

Experimental analysis

- measurements in (S(f), p(τ), stb.) systems

showing SR (laser, SQUID, neurons, etc.)

- analog simulations (diff.eq. solutions)

- numerical simulations
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New results

- SR with coloured noises (1/f, Lorentzian)

Hanggi, Moss, Kiss,Gingl, 1992

- Non-dynamical SR, Moss, Wiesenfeld,

Kiss,Gingl, 1993-1995

- Improving SNR ?, Kiss, 1995, Kiss,

Gingl, Lorincz (1996)

SNR Out > SNR In ?

Non-dynamical SR

(Gingl et. al. invited talk, Int.Conf. on

Fluctuations in Physics and Biology, Elba,

Italy, 1994)
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The simplest system showing SR, the level-

crossing detector (LCD) (Moss, 1993)

Gaussian noise+periodic signal > threshold

-> impulse at the output
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Theory (Kiss, 1994)

- slow, weak modulation of frequency of

the pulses, Gaussian noise

UAV=νAτ => UAV(t)=ν(t)Aτ
- theoretical result: S-N and SNR

- second harmonic: two maximuma in SNR

(Lőrincz)
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Experimental study (Gingl, 1994)

- analog and numerical simulations

- verification of theory, extensions
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LCD SR system

Fundamental SR system:

- extension of SR (new system)

- simplest

- non-dynamical

- process independent of frequency

- theory:linear,adiabatic approximation

- level-crossing also in dynamical systems

- SR depends on the level-crossing

statistics of noise, even in dynamical

systems
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8.3. Biased percolation model of device

degradation

Failure of electronic devices

(resistors,transistors,contacts,ICs)

Problems :(critical apps.)

- is the device reliable?

- how close the device to the failure?

- excitations to test state? (in use; affect

state)

- what we need to be measured?

/R,σ,T,δR,S(f),.../
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New percolation model(1995,

NODITO,Brno)

Percolation:

- randomly changing state of elements of a

structure

- successful applications in many systems

(spin, high Tc superconductors, phase

transitions, ...)
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Homogeneous thin film resistors

Simple model, network of uniform resistors
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Time evolution of state

position of elements : i,j

probability of failure of an element : pi,j of

Ri,j->inf

- pi,j=const ->"free" percolation

- pi,j=poexp(-Eo/kTi,j) -> "biased" percolation

Ti,j=To+B*I 2
i,j*Ri,j Joule-heating
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Free percolation
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Biased percolation
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Monte-Carlo simulations

Random decisions using pi,j values in every

step, transform the lattice to the new state:

- we have a given state of the sample,

then

1. calculate all currents flowing in resistors

2. calculate all probabilities pi,j

3. change the state of all resistors randomly

using pi,j

How to calculate the currents?
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U=R*I

Size of network : n x n

equations : k=n2+1

resistors : 2n(n+1)

>0 coeffs.: < (2n+1)(n2+1) vs. (n2+1)2

Operations: < (2n+1)2(n2+1)/2 vs. (n2+1)3/2

100x100 -> 20200 resistors, 10001 equations
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Free percolation

distribution of I2
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Biased percolation

distribution of I2
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Time evolution of sample resistance and

noise
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Noise properties

Spatially equally distributed, independent

Lorentzian fluctuations with, different

correlation times:

Distribution of τ is g(τ)=c/τ -> 1/f noise.
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Results

- A new model for faulire of electronic

devices based on percolation

MC simulations for free and biased

percolation:

- R(t)

- Distribution of current density, Joule

power

- Noise spectrum of the system

Further development

- noise temperature

- δR vs. R

- how to predict failure of devices using

this model

- other structures, e.g. disordered

- 3D modellings
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